GCE: Analysis, measure theory, Lebesgue integration No documents, no calculators allowed Write your name on each page you turn in

Exercise 1:

- a) Suppose that $f: \mathbb{R} \to \mathbb{R}$ is bounded. Give an example, with proof, of such a function f whose improper Riemann integral on $(-\infty, \infty)$ exists and is finite, but which is not in $L^1(\mathbb{R})$.
- b) Suppose $-\infty < a < b < \infty$. Prove that if the *proper* Riemann integral of a function g on [a,b] exists, then the Lebesgue integral of g on [a,b] exists and equals the value of the proper Riemann integral.

Exercise 2:

Let f_n be a sequence of measurable functions from [0,1] to \mathbb{R} . Assume that each function f_n is finite almost everywhere. Show that f_n converges in measure to zero if and only if

$$\lim_{n\to\infty} \int_0^1 \frac{|f_n|}{1+|f_n|} = 0$$

Hint: Recall that by definition f_n converges in measure to f if and only if, given any $\epsilon > 0$,

$$\lim_{n\to\infty} |\{|f_n - f| > \epsilon\}| = 0.$$

Exercise 3:

- a) Let (X, \mathcal{A}, μ) be a measure space, and f_n a converging sequence in $L^1(X)$. Show that f_n has a subsequence which is convergent almost everywhere.
- b) Find a sequence g_n in $L^1([0,1])$ such that: g_n converges in $L^1([0,1])$ and for all x in [0,1] the sequence $g_n(x)$ diverges.
- c) In the measure space (X, \mathcal{A}, μ) , let A_n be a sequence of elements of \mathcal{A} such that $\lim_{n \to \infty} \mu(A_n) = 0$ and let f be in $L^1(X)$. Show that $\lim_{n \to \infty} \int_{A_n} f = 0$

Exercise 4:

Suppose $f \in L^1(\mathbb{R})$ is such that f > 0, almost everywhere. Show that $\int f > 0$.